Q.1 (I) What Java keyword is used to:
a. tell a class to inherit from a previously defined class?
b. commit to defining methods defined in an abstract class?
c. enclose a block of code that might throw an exception?
d. enclose a block of code that handles that exception?

e. declare a variable to be a class variable rather than an instance variable?

f. declare that a function does not return a value?

g. refer to an object within a method of that same object?

h. declare a variable that holds a single Unicode character?
(II) What is the difference between a String and a StringBuffer?
(III) Which (one) package should you import in order to get the classes Button, Panel, Component, and Graphics?

(IV) Explain the difference between an object and an object reference
(V) There are four fundamental characteristics of Object-Oriented Programming. Name any three.
Q.2 (a) Give an example of three primitive types and their declarations.

 (b) Give two examples of wrapper classes and create an instance of each.

(c) List six relational operators

(d) Name three Boolean operators:

(e) What is meant by short-circuit evaluation ?
(f) Format the following if statements with indentation.

if (a < b) x = y; if (a < c) x = z;

else if (c < d) z = y;

(g) Write the Java code for a switch statement that will complete the same processing as this if statement (assume that the int variable florida has been

 declared and given a value).

 if (florida == 1)

 {

 System.out.println("Number 1 Ranking!");

 }

 else if(florida == 2)

 {

 System.out.println("Almost there ...");

 }

 else

 {

 System.out.println("Unacceptable");

 }

(h) How many times will each of the following loops execute the iterative part “zero,” “unknown,” and “infinite” are perfectly legitimate answers.

	int n = 1000;
for(int j = 0; j <= n; j++)

{

 System.out.print("Hello ");

}
	int n = 5;
for(int j = 1; j <= n; j--)

{

 System.out.print("Hello ");

 j++;

}

	int j = 1;

int n = 5;

while(j <= n)
{

 System.out.print("Hello ");

 n++;

}
	int j = 1;

while(j <= 11)

{

 System.out.print("Hello ");

 j = j + 3;

}

(i) Write the output generated by the following code.
int n1 = 10;

int n2 = 1000;

while(n1 * n1 <= n2)

{

 System.out.println(n1 + " " + n2);

 n1 = n1 + 1;

 n2 = n2 - 200;

}

Q.3 (a) The following code defines a class ComplexNumber. Write a two-argument constructor for this class that assigns values to its two instance variables.
class ComplexNumber {

 float re, im;

}

(b)

// The class Circle

class Circle

{

public double radius;

public Circle()

{

radius = 2;

}

public Circle(double r)

{

radius = r;

}

public double calculateArea()

{

double area;

area = radius * radius * 3.14;

return area;

}

}
(I) Using the class Circle , declare and create an array called list, type Circle, size 3. At creation, give each Circle a radius equal to 6 (do everything so that the array is ready to be used).

(II) Change the radius of the first position in the array list, from 6 to 10.

(c) Complete following non-recursive binary-search method, which returns the index of the key in the ascending list if the key occurs in the list, otherwise returns –1.

 int binarySearch(int key, int[] list)

 {

 int low = 0;

 int high = list.length-1;

 while ()
//
 {

 int mid = ;

 if (key < list[mid])

 ; //

 else if (key == list[mid])

 ;

 else if (key > list[mid])

 ;
//

 }

 return -1;

 }

(d) The following program contains the bubble-sort method, which makes several passes through the array. On each pass, neighboring pairs are compared successively. If a pair is in decreasing order, its values are swapped; otherwise, the values remain unchanged.
public class FinalTest3 {

 public static void main (String[] args){

 int[] myList = {5, 4, 1, 2, 3, 4};

 bubbleSort(myList);

 }

 static void bubbleSort(int[] list) {

 boolean changed = true;

 do {

 changed = ;

 for (int j=0; j< ; j++)

 if () {
 int temp = list[j];

 list[j] = list[j+1];

 list[j+1] = temp;

 changed = ;

 }

 }

 while ();
 }

}

Q.4 Write a temperature conversion program that converts from Fahrenheit to Celsius. The Fahrenheit temperature should be entered from the keyboard (via a TextField). A Label should be used to display the converted temperature. Use the following formula for the conversion:

Celsius = 5 /9 × (Fahrenheit - 32)

 The appearance of your applet should be similar to the one below.
[image: image1.png]B A ppletiiewer * Temperature clas 9 [=] B3

Applet

Enter termperature in Fahrenheit (280

Tempersture nCelsius: 1370 [GamwaH

Applet BB -

Assume that no error will occur in the input and the layout is done by the browser automatically.

Hint : you can convert a string value to a double value by using the following code:

Double doubleObj = new Double(kgStr);

double kgDouble = doubleObj.doubleValue();
Q.5 (i) Explain, in the context of object-oriented programming, the meaning of the Inheritance and Polymorphism.

(ii) Show the printout of the following programs.

(a)

class Parent {

int data;

Parent(int data) {

this.data = data;

}

int change() {

return data+2;

}

int twice() {

return change()*2;

}

}

class Son extends Parent {

Son (int data) {

super(data);

}

int change() {

return data-2;

}

public static void main (String args[]) {

Parent parent = new Parent(5);

Son son=new Son(5);

System.out.println("(a)"+parent.twice());

System.out.println("(b)"+son.twice());

parent = son;

System.out.println("(c)"+parent.twice());

}

}
 (b)

class A {

 protected int one;

 public A () {

 one = 55;

 }

 public A (int a) {

 one = a;

 }

 public void hi() {

 System.out.println ("Hi " + one);

 }

}

class B extends A {

 protected int two;

 public void hello () {

 System.out.println ("Hello");

 }

}

class C extends B {

 protected int three;

 public C (int a, int c) {

 three = c;

 }

 public void salut() {

 super.hi();

 super.hello();

 System.out.println

 ("Salut " + one + " " two + " " + three);

 }

}

public class Tester {

 public static void main (String[] args) {

 C c = new C (5, 7);

 c.salut();

 }

}

Q.6 Suppose you need to develop a program that computes perimeter for different kinds of quadrilaterals using objects.

From your study of geometry you know the following relationships:

• A trapezoid is a quadrilateral.

• A rectangle is a quadrilateral.

• A square is a rectangle.

(a) Draw a diagram that represents this hierarchy of quadrilaterals. Use the names Quad, Trap, Rect, and Squa to represent the shape names. Also, show how the shapes inherit from the Object class.

(b) You need to develop software that computes the perimeter for each of the three quadrilaterals shown below:

4

1

3 1 1

2 4

Quadrilaterals with Dimensions

(not drawn to scale)
For full credit, your program should:

• Use all given variable, method, and class names.

• Use an object oriented approach.

• Use encapsulation.

• Use inheritance for the classes Quad, Rect, and Squa.

Fill in missing code inside the boxes and blank lines.

public class problem1 {

public static void main(String args[]) {

// Instantiate objects from Quad, Rect, and Squa classes:

// Constructor for Quad must take all four dimensions as parameters.

// Constructor for Rect must take width and height as parameters.

// Constructor for Squa must take the length of one side as a parameter.

// Output the shapes’ perimeters:

A.print();

B.print();

C.print();

} // method main

// class problem1

// Quadrilaterals

class Quad {

// Declare instance variables that store the 4 dimensions of the

// quadrilateral. Call the dimensions s1, s2, s3, and s4.

private double s1;

private double s2;

private double s3;

private double s4;

// Use the constructor to assign the variables s1, s2, s3, and s4.

public Quad(double s1, double s2, double s3, double s4) {

this.s1 = s1;

this.s2 = s2;

this.s3 = s3;

this.s4 = s4;

} // constructor Quad

// Utility Method called perim: computes perimeter.

// Service method called print:

// obtains perimeter from perim and prints value.

} // class Quad

// Rectangles

// Class Rect for rectangles: must inherit from superclass Quad

// Squares

// Class Squa for squares: must inherit from superclass Rect

Q.7 The class Account holds data about a bank account.

The following data is associated with this class.

1) Instance data that holds the account name, the account balance, and the number of deposits and the number of withdrawals made against the account, where:
(
account name is a String variable;
(
balance is a double variable that holds the amount of money that is

currently in the account;
(
number of deposits and number of withdrawals hold the number of

deposit and withdrawal transactions made in the current period.

2) Class data that holds the cost of each deposit transaction ($0.25) and each withdrawal transaction ($0.50). This data is stored in the symbolic constants DEPOSIT_FEE and WITHDRAWAL_FEE.

The following instance methods are associated with the Account class.

1) deposit which, when invoked by the statement:
account.deposit (depositAmount);
adds depositAmount to the balance and increments the number of deposits counter.

2) withdrawal which, when invoked by the statement:
account.withdrawal (withdrawalAmount);
subtracts withdrawalAmount from the balance and increments the counter for the number of withdrawals. (You may assume that the withdrawal amount does not exceed the current balance, so do not include any error checks.)

3) deductFees which, when invoked by the statement:
account.deductFees ();
reduces the balance by the monthly fee which is calculated as:
number of deposits * deposit fee + number of withdrawals * withdrawal fee.
(You may assume that the fee amount does not exceed the current balance.)
This method also resets the number of deposits and withdrawals to zero.

4) returnBalance which, when invoked by the statement:
balance = account.returnBalance ();
returns the balance in the account.

When an instance of the class is created both the account name and the initial balance must be specified.

The application on the next page shows how this class might be used.

Write the program that defines this class.

import javabook.*;

class Q2

{

 public static void main (String args [])

 {

 // Declare the variables

 MainWindow mainWindow;

 InputBox inputBox;

 String accountName;

 Account account;

 double initialBalance, // Balance when account opened

 depositAmount, // To be added to the balance

 withdrawalAmount; // Subtract from the balance

 // Create mainWindow and inputBox

 mainWindow = new MainWindow ("Examination");

 inputBox = new InputBox (mainWindow, "Input");

 mainWindow.show ();

 // Create an account instance

 accountName = inputBox.getString("Enter account name");

 initialBalance = inputBox.getFloat("Enter initial balance");

 account = new Account (accountName, initialBalance);

 // Make two deposits and display the resultant balance

 for (int i = 1; i <= 2; i++) {

 depositAmount=inputBox.getFloat("Enter deposit amount");

 account.deposit (depositAmount);

 System.out.println ("Current balance:$" +

account.returnBalance ());

 } // end for

 // Make 3 withdrawals and display the resultant balance

 for (int i = 1; i <= 3; i++) {

 withdrawalAmount = inputBox.getFloat

("Enter the withdrawal amount");

 account.withdrawal (withdrawalAmount);

 System.out.println ("Current balance:$" +

account.returnBalance ());

 } // end for

 // Take away the fees and display the resultant balance

 account.deductFees ();

 System.out.println ("Current balance:$" +

account.returnBalance ());

 } // method main

} // class Q2

class Account
{

}

Rect

Squa

PAGE
12

