
Revision Exercise 3

(1) State whether each of the following is true or false. If false, explain why.

a. The default case is required in the switch selection structure.
b. The break statement is required in the default case of a switch selection

structure.
c. The expression (x > y && a < b) is true if either x > y is true or a < b is

true.
d. An expression containing the || operator is true if either or both of its

operands is true.

(2) Write a Java statement or a set of Java statements to accomplish each of the
following:

a. Sum the odd integers between 1 and 99 using a for structure. Assume the
integer variables sum and count have been declared.

b. Calculate the value of 2.5 raised to the power of 3 using the pow method.
c. Print the integers from 1 to 20 using a while loop and the counter variable x.

Assume that the variable x has been declared but not initialized. Print only
five integers per line. [Hint: Use the calculation x % 5. When the value of this
is 0, print a newline character; otherwise, print a tab character. Assume this is
an application–use the System.out.println() method to output the
newline character and use the System.out.print(’\t’) method to
output the tab character.]

d. Repeat Exercise 2 c) using a for structure.

(3) Find the error in each of the following code segments and explain how to correct
it.

a. x = 1;

while (x <= 10);

 x++;

}

b. for (y = .1; y != 1.0; y += .1)
 System.out.println(y);

c. switch (n) {
 case 1:

 1

 System.out.println("The number is 1");

 case 2:

 System.out.println("The number is 2");

 break;

 default:

 System.out.println("The number is not 1 or 2");

 break;

}
d. The following code should print the values 1 to 10.

n = 1;

while (n < 10)

 System.out.println(n++);

(4)

Find the error in each of the following. [Note: There may be more than one error.]

a. For (x = 100, x >= 1, x++)
 System.out.println(x);

b. The following code should print whether integer value is odd or even:
switch (value % 2) {

 case 0:

 System.out.println("Even integer");

 case 1:

 System.out.println("Odd integer");

}
c. The following code should output the odd integers from 19 to 1:

for (x = 19; x >= 1; x += 2)

 System.out.println(x);
d. The following code should output the even integers from 2 to 100:

counter = 2;

do {

 System.out.println(counter);

 counter += 2;

} While (counter < 100);

(5) Write an application that finds the smallest of several integers. Assume that the
first value read specifies the number of values to input from the user.

 2

(6) The factorial method is used frequently in probability problems. The factorial of a
positive integer n (written n! and pronounced "n factorial") is equal to the product
of the positive integers from 1 to n. Write an application that evaluates the
factorials of the integers from 1 to 5. Display the results in tabular format. What
difficulty might prevent you from calculating the factorial of 20?

(7) Assume i = 1, j = 2, k = 3 and m = 2. What does each of the following
statements print? Are the parentheses necessary in each case?

a. System.out.println(i == 1);
b. System.out.println(j == 3);
c. System.out.println(i >= 1 && j < 4);
d. System.out.println(m <= 99 & k < m);
e. System.out.println(j >= i || k == m);
f. System.out.println(k + m < j | 3 - j >= k);
g. System.out.println(!(k > m));

(8) What does the following program segment do?

for (i = 1; i <= 5; i++) {

 for (j = 1; j <= 3; j++) {

 for (k = 1; k <= 4; k++)

 System.out.print('*');

 System.out.println();

 }

 System.out.println();

}

(9) Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by one term of this series, by two
terms, by three terms, etc. How many terms of this series do you have to use before
you first get 3.14? 3.141? 3.1415? 3.14159?

 3

(10) (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, &, ||,
|, ^ and !. De Morgan’s Laws can sometimes make it more convenient for us to
express a logical expression. These laws state that the expression !(condition1 &&
condition2) is logically equivalent to the expression (!condition1 || !condition2).
Also, the expression !(condition1 || condition2) is logically equivalent to the
expression (!condition1 && !condition2). Use De Morgan’s Laws to write
equivalent expressions for each of the following, and then write a program to show
that both the original expression and the new expression in each case are equivalent:

a. !(x < 5) && !(y >= 7)
b. !(a == b) || !(g != 5)
c. !((x <= 8) && (y > 4))
d. !((i > 4) || (j <= 6))

Answers:
(1)

a. False. The default case is optional. If no default action is needed, then
there is no need
for a default case.

b. False. The break statement is used to exit the switch structure. The
break statement is not required for the last case in a switch structure.

c. False. Both of the relational expressions must be true in order for the entire
expression to be true when using the && operator.

d. True.

(2)

a. sum = 0;

for (count = 1; count <= 99; count += 2)

 sum += count;

b. Math.pow(2.5, 3)
c. x = 1;

 while (x <= 20) {

 System.out.print(x);

 if (x % 5 == 0)

 System.out.println();

 else

 4

 System.out.print('\t');

 ++x;

}
d. for (x = 1; x <= 20; x++) {

 System.out.print(x);

 if (x % 5 == 0)

 System.out.println();

 else

 System.out.print('\t');

}

or

for (x = 1; x <= 20; x++)

 if (x % 5 == 0)

 System.out.println(x);

 else

 System.out.print(x + "\t");

(3)

a. Error: The semicolon after the while header causes an infinite loop and there
is a missing left brace.
Correction: Replace the semicolon by a { or remove both the ; and the }.

b. Error: Using a floating-point number to control a for repetition structure may
not work because floating-point numbers are represented approximately by
most computers.
Correction: Use an integer, and perform the proper calculation in order to get
the values you desire.
for (y = 1; y != 10; y++)

 System.out.println((float) y / 10);
c. Error: Missing break statement in the statements for the first case.

Correction: Add a break statement at the end of the statements for the first
case. Note that this is not necessarily an error if the programmer wants the
statement of case 2: to execute every time the case 1: statement executes.

 5

d. Error: Improper relational operator used in the while repetition-continuation
condition.
Correction: Use <= rather than < or change 10 to 11.

(4)

a. ANS: The F in for should be lowercase. Semicolons should be used in the for
header instead of commas. ++ should be --.

b. ANS: A break statement should be placed in case 0.
c. ANS: += should be -=.
d. ANS: The W in While should be lowercase. < should be <=.

(5)
// Small.java
// Program finds the smallest of several letters
import javabook.*;
public class Small {
 public static void main(String args[])
 {
 MainWindow mainWindow = new MainWindow("Find Smallest letter
program");
 InputBox inputBox = new InputBox(mainWindow);
 OutputBox outputBox = new OutputBox(mainWindow);
 mainWindow.show();
 outputBox.show();
 int smallest = 0, temp = 0, number;
 number = inputBox.getInteger("Enter number of integers:");
 if (number == 0)
 System.exit(0);
 for (int x = 1; x <= number; x++) {
 temp = inputBox.getInteger("Enter integer:");
 if (x == 1)
 smallest = temp;
 else if (temp < smallest)
 smallest = temp;
 }
 outputBox.printLine("Smallest Integer is: " + smallest);
 }
}

 6

(6)
// Factorial.java
// Program calculates factorials
public class Factorial {
 public static void main(String args[])
 {
 int fact;
 String output = "X\tX!\n";
 for (int z = 1; z <= 5; z++) {
 fact = 1;
 for (int w = 1; w <= z; w++)
 fact *= w;
 output += "\n" + z + "\t" + fact;
 }
 System.out.println(output);
 }
}
(7)

a. ANS: True.
b. ANS: False.
c. ANS: True.
d. ANS: False.
e. ANS: True.
f. ANS: False.
g. ANS: False.

(8)

 7

(9)
// Pi.java
// Program calculates Pi
public class Pi {
 public static void main(String args[])
 {
 double piValue = 0, num = 4.0, denom = 1.0;
 int accuracy = 400000;
 String output = "Accuracy: " + accuracy;
 output += "\nTerm\t\tPi\n";

System.out.println("Please wait........");
 for (int term = 1; term <= accuracy; term++) {
 if (term % 2 != 0)
 piValue += num / denom;
 else
 piValue -= num / denom;
 output += "\n" + term + "\t\t" + piValue;
 denom += 2.0;
 }
 System.out.println(output);
 }
}
(10)
// DeMorgan.java
// Program tests DeMorgan's laws
public class DeMorgan {
 public static void main(String args[])
 {
 int x = 6, y = 0;
 String result = "";

 8

 // part a
 if (!(x < 5) && !(y >= 7))
 result += "\n!(x < 5) && !(y >= 7)";
 if (!((x < 5) || (y >= 7)))
 result += "\n!((x < 5) || (y >= 7)";
 int a = 8, b = 22, g = 88;
 // part b
 if (!(a == b) || !(g != 5))
 result += "\n!(a == b) || !(g != 5)";
 if (!((a == b) && (g != 5)))
 result += "\n!((a == b) && (g != 5))";
 x = 8;
 y = 2;
 // part c
 if (!((x <= 8) && (y > 4)))
 result += "\n!((x <= 8) && (y > 4))";
 if (!(x <= 8) || !(y > 4))
 result += "\n!(x <= 8) || !(y > 4)";
 int i = 0, j = 7;
 // part d
 if (!((i > 4) || (j <= 6)))
 result += "\n!((i > 4) || (j <= 6))";
 if (!(i > 4) && !(j <= 6))
 result += "\n!(i > 4) && !(j <= 6)";
 System.out.println(result);
 }
}

 9

